Difference between revisions of "Machine Learning"
(→Courses) |
|||
Line 1: | Line 1: | ||
+ | [https://www.youtube.com/playlist?list=PLjJh1vlSEYgvZ3ze_4pxKHNh1g5PId36- DeepLearning.TV YouTube playlist] -- good starter! | ||
+ | |||
== Tuts == | == Tuts == | ||
[http://ufldl.stanford.edu/tutorial/ UFLDL Stanford (Deep Learning) Tutorial] | [http://ufldl.stanford.edu/tutorial/ UFLDL Stanford (Deep Learning) Tutorial] |
Revision as of 11:21, 24 August 2016
DeepLearning.TV YouTube playlist -- good starter!
Tuts
UFLDL Stanford (Deep Learning) Tutorial
Principles of training multi-layer neural network using backpropagation <-- Great visual guide!
Courses
Neural Networks for Machine Learning — Geoffrey Hinton, UToronto
- Coursera course - Vids (on YouTube) - same, better organized - Intro vid for course - Hinton's homepage - Bayesian Nets Tutorial -- helpful for later parts of Hinton
Deep learning at Oxford 2015 (Nando de Freitas)
Notes for Andrew Ng's Coursera course.
Hugo Larochelle: Neural networks class - Université de Sherbrooke
Papers
Applying Deep Learning To Enhance Momentum Trading Strategies In Stocks
- Hinton (2010) -- A Practical Guide to Training Restricted Boltzmann Machines - Hinton, Salakhutdinov (2006) -- Reducing the Dimensionality of Data with Neural Networks
Books
Nielsen -- Neural Networks and Deep Learning <-- online book
http://www.deeplearningbook.org/
S/W
http://playground.tensorflow.org
SwiftNet <-- My own back propagating NN (in Swift)
Misc
Links: https://github.com/memo/ai-resources
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ <-- Great article!
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Hopfield to Boltzmann http://haohanw.blogspot.co.uk/2015/01/boltzmann-machine.html
https://www.youtube.com/watch?v=gfPUWwBkXZY <-- Hopfield vid