Difference between revisions of "Machine Learning"
(→S/W) |
|||
Line 38: | Line 38: | ||
[http://playground.tensorflow.org http://playground.tensorflow.org] | [http://playground.tensorflow.org http://playground.tensorflow.org] | ||
− | [https://github.com/p-i-/SwiftNet SwiftNet] <-- My own back propagating NN (in Swift) | + | [https://www.youtube.com/watch?v=wuo4JdG3SvU&list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ TensorFlow in IPython YouTube] (5 vids) |
+ | |||
+ | [https://github.com/p-i-/SwiftNet SwiftNet] <-- My own back propagating NN (in Swift) | ||
== Misc == | == Misc == |
Revision as of 11:47, 24 August 2016
Getting Started
DeepLearning.TV YouTube playlist -- good starter!
Tuts
UFLDL Stanford (Deep Learning) Tutorial
Principles of training multi-layer neural network using backpropagation <-- Great visual guide!
Courses
Neural Networks for Machine Learning — Geoffrey Hinton, UToronto
- Coursera course - Vids (on YouTube) - same, better organized - Intro vid for course - Hinton's homepage - Bayesian Nets Tutorial -- helpful for later parts of Hinton
Deep learning at Oxford 2015 (Nando de Freitas)
Notes for Andrew Ng's Coursera course.
Hugo Larochelle: Neural networks class - Université de Sherbrooke
Papers
Applying Deep Learning To Enhance Momentum Trading Strategies In Stocks
- Hinton (2010) -- A Practical Guide to Training Restricted Boltzmann Machines - Hinton, Salakhutdinov (2006) -- Reducing the Dimensionality of Data with Neural Networks
Books
Nielsen -- Neural Networks and Deep Learning <-- online book
http://www.deeplearningbook.org/
S/W
http://playground.tensorflow.org
TensorFlow in IPython YouTube (5 vids)
SwiftNet <-- My own back propagating NN (in Swift)
Misc
Links: https://github.com/memo/ai-resources
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ <-- Great article!
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Hopfield to Boltzmann http://haohanw.blogspot.co.uk/2015/01/boltzmann-machine.html
https://www.youtube.com/watch?v=gfPUWwBkXZY <-- Hopfield vid