Difference between revisions of "Machine Learning"

From PiWiki
Jump to: navigation, search
(S/W)
Line 38: Line 38:
 
[http://playground.tensorflow.org http://playground.tensorflow.org]
 
[http://playground.tensorflow.org http://playground.tensorflow.org]
  
[https://github.com/p-i-/SwiftNet SwiftNet] <-- My own back propagating NN (in Swift)  
+
[https://www.youtube.com/watch?v=wuo4JdG3SvU&list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ TensorFlow in IPython YouTube] (5 vids)
 +
 
 +
[https://github.com/p-i-/SwiftNet SwiftNet] <-- My own back propagating NN (in Swift)
  
 
== Misc ==
 
== Misc ==

Revision as of 11:47, 24 August 2016

Getting Started

DeepLearning.TV YouTube playlist -- good starter!

Tuts

UFLDL Stanford (Deep Learning) Tutorial

Principles of training multi-layer neural network using backpropagation <-- Great visual guide!


Courses

Neural Networks for Machine Learning — Geoffrey Hinton, UToronto

- Coursera course
- Vids (on YouTube)
- same, better organized
- Intro vid for course
- Hinton's homepage
- Bayesian Nets Tutorial -- helpful for later parts of Hinton

Deep learning at Oxford 2015 (Nando de Freitas)

Notes for Andrew Ng's Coursera course.

Hugo Larochelle: Neural networks class - Université de Sherbrooke

Papers

Applying Deep Learning To Enhance Momentum Trading Strategies In Stocks

- Hinton (2010) -- A Practical Guide to Training Restricted Boltzmann Machines
- Hinton, Salakhutdinov (2006) -- Reducing the Dimensionality of Data with Neural Networks


Books

Nielsen -- Neural Networks and Deep Learning <-- online book

http://www.deeplearningbook.org/

S/W

http://playground.tensorflow.org

TensorFlow in IPython YouTube (5 vids)

SwiftNet <-- My own back propagating NN (in Swift)

Misc

Oxford AI/Trader

Links: https://github.com/memo/ai-resources

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ <-- Great article!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Hopfield to Boltzmann http://haohanw.blogspot.co.uk/2015/01/boltzmann-machine.html

https://www.youtube.com/watch?v=gfPUWwBkXZY <-- Hopfield vid