Difference between revisions of "Machine Learning"
(→Misc) |
(→Courses) |
||
Line 17: | Line 17: | ||
[http://www.holehouse.org/mlclass/ Notes] for Andrew Ng's Coursera course. | [http://www.holehouse.org/mlclass/ Notes] for Andrew Ng's Coursera course. | ||
+ | |||
+ | [https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH Hugo Larochelle: Neural networks class - Université de Sherbrooke] | ||
== Papers == | == Papers == |
Revision as of 10:26, 24 August 2016
Tuts
UFLDL Stanford (Deep Learning) Tutorial
Principles of training multi-layer neural network using backpropagation <-- Great visual guide!
Courses
Neural Networks for Machine Learning — Geoffrey Hinton, UToronto
- Coursera course - Vids (on YouTube) - same, better organized - Intro vid for course - Hinton's homepage - Bayesian Nets Tutorial -- helpful for later parts of Hinton
Deep learning at Oxford 2015 (Nando de Freitas)
Notes for Andrew Ng's Coursera course.
Hugo Larochelle: Neural networks class - Université de Sherbrooke
Papers
Applying Deep Learning To Enhance Momentum Trading Strategies In Stocks
- Hinton (2010) -- A Practical Guide to Training Restricted Boltzmann Machines - Hinton, Salakhutdinov (2006) -- Reducing the Dimensionality of Data with Neural Networks
Books
Nielsen -- Neural Networks and Deep Learning <-- online book
http://www.deeplearningbook.org/
S/W
http://playground.tensorflow.org
SwiftNet <-- My own back propagating NN (in Swift)
Misc
Links: https://github.com/memo/ai-resources
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ <-- Great article!
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Hopfield to Boltzmann http://haohanw.blogspot.co.uk/2015/01/boltzmann-machine.html
https://www.youtube.com/watch?v=gfPUWwBkXZY <-- Hopfield vid